Programming Abstractions

Lecture 31: Streams

Stephen Checkoway

Review of delay and force

(delay exp) creates a promise which when forced evaluates exp and returns
the value

(force p) forces the promise p to obtain a value; if the promise's exp has not
been evaluated yet, it Is evaluated and cached; otherwise the cached value is
returned

What is printed by this code?
(let* ([x 10]

[y (delay x)])
(set! x 20)

(displayln (force vy)))

A. 10
B. 20

C. It's an error

What is printed by this code?
(let* ([x 10]

[y (delay x)])
(set! x 20)
(displayln (force vy))
(set! x 30)
(displayln (force vy)))

C. 30
30

D. It's an error

Concurrent execution

(require racket/promise)
(displayln "Before")

(define p (delay/thread
(sleep 5)
(displayln "Done!")
42))

(displayln "During computation”)
(force p)
(displayln "After")

What is the most likely output of

(define pl (delay (println "Hello!")))

(define p2 (delay/thread (println "Goodbye!")))
(sleep 1) ; Wait one second

(force pl)

(force p2)

A. Hello! C. Goodbye!
Goodbye! Hello!
Hello! Hello!
Goodbye! Goodbye!

B. Hello! D. Goodbye!
Goodbye! Hello!

Promises In other languages

JavaScript has async which starts some potentially long-running calculation or
(more typically) starts loading a resource from the Internet and returns a promise

This is paired with await which waits for the promise to finish computing/
resource to download and returns the answer

Rust has something similar

Last time: infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where
> the car Is a prime; and
> the cdr Is a promise which will return the next cons cell

force

An infinite list iIs an instance of a stream

A stream is a (possibly infinite) sequence of elements

A list Is a valid, finite stream
» (stream? '(1 2 3)) => #t

Infinite streams must be built lazily out of promises (using delay internally)

Accessing elements of a stream forces their evaluation

Let's build a stream

As with our infinite list of primes we'll use a cons-cell holding a value and a
promise

API

>

(stream-cons head tail)

> (stream-first s)

> (stream-rest s)
(stream-empty? s)

> empty-stream

>

Constructing a lazy stream

(stream-cons head tail)

We can't use a procedure because Iit'll evaluate head and tail
(define-syntax stream-cons

(syntax-rules ()
[(head tail) (delay (cons head (delay tail)))]))

stream-cons returns a promise which when forced gives a cons cell where
the second element is a promise

Accessing the stream

(stream-first s) (stream-rest s)

s IS elther a promise or a cons cell so we need to check which
(define (stream-first s)
(Lf (promise? s)
(stream-first (force s))
(car s)))

(define (stream-rest s)
(Lf (promise? s)
(stream-rest (force s))
(cdr s)))

We can't use first and rest because those check if their arguments are lists

Checking if a stream is empty

(define empty-stream null)
(define (stream-empty? s)
(Lf (promise? s)
(stream-empty? (force s))
(null? s)))

Constructing an infinite stream

Write a procedure which
> returns a stream constructed via
> where the tail of the stream is a recursive call to the procedure

Call the procedure with the initial argument

(define (integers-from n)
(n (integers-from (addl n))))

(define positive-integers (integers-from 0))

Accessing the elements

We can use stream-first and stream-rest to iterate through the elements

(define (stream-ref s 1dx)
(cond [(zero? 1dx) (stream-first s)]
[else (stream-ref (stream-rest s) (subl 1dx))]))

Primes as a stream

(define (prime? n) ..) ; Same as last time

(define (next-prime n)
(cond [(prime? n) (stream-cons n (next-prime (+ n 2)))]
[else (next-prime (+ n 2))]))

(define (primes)
(stream-cons 2 (next-prime 3)))

Fibonaccl numbers as a stream

Recall the Fibonacci numbers are defined by fo =0, f1 =1 and f, = fo-1 + fn2

(define (next-fib m n)
(stream-cons m (next-fib n (+ m n))))

(define fibs (next-fib 0 1))

Building streams from streams

Let's write a procedure to add two streams together
> Use to construct the new stream
» Use stream-first on each stream to get the heads
> Recurse on the tails via stream-rest
(define (stream-add s t)
(cond [(stream-empty? s) empty-stream]
[(stream-empty? t) empty-stream]
[else
((+ (stream-first s)
(stream-first t))
(stream-add (stream-rest s)
(stream-rest t)))]))

Fibonaccl numbers as a stream: take 2

fo=0,f1=1and fn =fp-1 + fn-2
We can build our Fibonacci sequence directly from that definition (this is silly)

(define fibs
(stream-cons
0
(stream-cons
1
(stream-add fibs (stream-rest fibs)))))

Streams in Racket

These are already built-in so we don't need to write them
» (require racket/stream)
(stream exp ...) ; Works like (list exp
(stream? vVv)
(stream-cons head tail)
> (stream-first s)
(stream-rest s)
(stream-empty? s)
> empty-stream
> (stream-ref s 1dx)

And several others

Let's write some Racket!

Open up a new file in DrRacket

Make sure the top of the file contains
#lang racket
(require racket/stream)

Write the procedure (stream-length s) which returns the length of a finite
Stream

l.e., (stream-length (stream 1 2 3 4 5)) returnsS

Use stream-empty? and stream-rest

Write more stream procedures

Write the procedure (stream->1ist s) that takes a finite-length stream and
returns the elements as a list

Write the following procedures that act like their list counterparts, but operate
lazily on streams; in particular, do not covert them to lists!
> (stream-take s num)
Returns a stream containing the first num elements of s, make sure this is lazy
> (stream-drop s num)
Returns a stream containing all of the elements of s in order except for the first
num
> (stream-filter £ s)
Returns a stream containing the elements x of s for which (£ x) returns true
> (stream-map f s)
Returns a stream by mapping £ over each element of s

More stream procedures

> (stream-double s)
Returns a stream containing each element of s twice
(stream-double (stream 1 2 3)) => (stream 1 1 2 2 3 3)
> (stream-iterleave s t)
Returns a stream that interleaves elements of s and t
(stream-interleave (stream 1 2 3) '(a b c d))
=> (stream 1 'a 2 'b 3 'c 'd)

Multi-argument stream-map

(stream-map £ s ...)

Racket has stream-map built-in but unlike its list counterparts, it only takes a
single stream

Generalize it to take any number of streams where the length of the returned
string is the minimum length of any of the stream arguments (i.e., return empty-
stream If any of the streams becomes empty); you'll want to use ormap, map

and apply
> (define (stream-map £ . ss) ..)

